第八章 平面解析几何第一节直线的倾斜角与斜率、直线的方程1.利用两点式计算斜率时易忽视x1=x2时斜率k不存在的情况.2.用直线的点斜式求方程时,在斜率k不明确的情况下,注意分k存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.4.由一般式Ax+By+C=0确定斜率k时易忽视判断B是否为0,当B=0时,k不存在;当B≠0时,k=-.第二节两直线的位置关系1.在判断两直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.第三节圆的方程对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一成立条件.第四节直线与圆、圆与圆的位置关系1.对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k不存在情形.3\n2.两圆相切问题易忽视分两圆内切与外切两种情形.第五节椭圆1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为+=1(a>b>0).3.注意椭圆的范围,在设椭圆+=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.第六节双曲线1.双曲线的定义中易忽视2a<|F1F2|这一条件.若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a>|F1F2|则轨迹不存在.2.双曲线的标准方程中对a、b的要求只是a>0,b>0易误认为与椭圆标准方程中a,b的要求相同.若a>b>0,则双曲线的离心率e∈(1,);若a=b>0,则双曲线的离心率e=;若0<a<b,则双曲线的离心率e>.3\n3.注意区分双曲线中的a,b,c大小关系与椭圆a、b、c关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±,当焦点在y轴上,渐近线斜率为±.第七节抛物线1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视只有p>0,才能证明其几何意义是焦点F到准线l的距离,否则无几何意义.第八节圆锥曲线的综合问题1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.3