2022-2022学年湖南省长沙市长郡中学高三(上)周测物理试卷(11月份)(2)一、选择题(本题包括12小题,每小题4分,共48分.每小题给出的四个选项中,1-8只有一个选项正确,9-12有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(4分)如图中四幅图片涉及物理学史上的四个重大发现.其中说法不正确的有( ) A.卡文迪许通过扭秤实验,测定出了引力常量 B.奥斯特通过实验研究,发现了电流周围存在磁场 C.法拉第通过实验研究,总结出法拉第电磁感应定律 D.牛顿根据理想斜面实验,提出力不是维持物体运动的原因2.(4分)(2022•无为县校级模拟)用水平力F拉着一物体在水平地面上做匀速运动,从某时刻起力F随时间均匀减小,物体所受的摩擦力f随时间t变化如图中实线所示.下列说法正确的是( ) A.F是从t1时刻开始减小的,t2时刻物体的速度刚好变为零 B.F是从t1时刻开始减小的,t3时刻物体的速度刚好变为零 C.F是从t2时刻开始减小的,t2时刻物体的速度刚好变为零 D.F是从t2时刻开始减小的,t3时刻物体的速度刚好变为零-24-3.(4分)(2022•思明区校级模拟)显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是( ) A.B.C.D.4.(4分)(2022•甘肃一模)将电动车的前轮装有发电机,发电机蓄电池连接.当在骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500J的初动能在粗糙的水平路面上滑行,第一次关闭自充电装置,让车自由滑行,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是( ) A.200JB.250JC.300JD.500J5.(4分)(2022•上海模拟)如图所示,绝缘杆两端固定带电小球A和B,轻杆处于水平向右的匀强电场中,不考虑两球之间的相互作用.初始时杆与电场线垂直,将杆右移的同时顺时针转过90°,发现A、B两球电势能之和不变.根据如图给出的位置关系,下列说法正确的是( ) A.A一定带正电,B一定带负电 B.A、B两球带电量的绝对值之比qA:qB=1:2 C.A球电势能一定增加 D.电场力对A球和B球都不做功-24-6.(4分)(2022秋•武汉校级月考)在长度为l、横截面积为S、单位体积内的自由电子数为n的金属导体两端加上电压,导体中就会产生匀强电场.导体内电量为e的自由电子受电场力作用下先做加速运动,然后与做热运动的阳离子碰撞而减速,如此往复…所以,我们通常将自由电子的这种运动简化成速率为v(不随时间变化)的定向运动.已知阻碍电子运动的阻力大小与电子定向移动的速率v成正比,即f=kv(k是常数),则该导体的电阻应该等于( ) A.B.C.D.7.(4分)(2022•海淀区模拟)如图所示,质量相同的木块A、B,用轻弹簧连接置于光滑水平面上,开始弹簧处于自然状态,现用水平恒力F推木块A,则弹簧在第一次被压缩到最短的过程中( ) A.当A、B速度相同时,加速度aA=aB B.当A、B速度相同时,加速度aA>aB C.当A、B加速度相同时,速度vA<vB D.当A、B加速度相同时,速度vA>vB8.(4分)(2022•重庆模拟)在研究微型电动机的性能时,应用如图所示的实验电路.当调节滑动变阻器R并控制电动机停止转动时,电流表和电压表的示数分别为0.50A和2.0V.重新调节R并使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0A和24.0V.则这台电动机正常运转时输出功率为( ) A.47WB.44WC.32WD.48W9.(4分)(2022秋•沅陵县校级月考)如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ.现给环一个水平向右的恒力F,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F1=kv,其中k为常数,则圆环运动过程中( ) A.最大加速度为B.最大加速度为 C.最大速度为D.最大速度为10.(4分)(2022秋•友谊县校级月考)我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速圆周运动,运行的周期为T.若以R表示月球的半径,则( ) A.卫星运行时的向心加速度为 B.卫星运行时的线速度为-24- C.物体在月球表面的重力加速度为 D.月球的第一宇宙速度为11.(4分)(2022春•琼海期中)以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( ) A.此时小球的竖直分速度大小等于水平分速度大小 B.此时小球的速度大小为 C.小球运动的时间为 D.此时小球速度的方向与位移的方向相同12.(4分)如图所示,C1=6μF,C2=3μF,R1=3Ω,R2=6Ω,电源电动势E=18V,内阻不计.下列说法正确的是( ) A.开关S断开时,a、b两点电势相等 B.开关S闭合后,a、b两点间的电流是2A C.开关S断开时C1带的电荷量比开关S闭合后C1带的电荷量大 D.不论开关S断开还是闭合,C1带的电荷量总比C2带的电荷量大 二、实验题(共16分)13.(8分)(2022秋•西丰县期中)某兴趣小组为了测量一待测电阻Rx的阻值,准备先用多用电表粗测出它的阻值,然后再用伏安法精确地测量.实验室里准备了以下器材:A.多用电表B.电压表Vl,量程3V,内阻约5kΩC.电压表V2,量程15V,内阻约25kΩD.电流表Al,量程0.6A,内阻约0.2ΩE.电流表A2,量程3A,内阻约0.04ΩF.电源,电动势E=4.5VG.滑动变阻器Rl,最大阻值5Ω,最大电流为3AH.滑动变阻器R2,最大阻值200Ω,最大电流为1.5AI.电键S、导线若干-24-①在用多用电表粗测电阻时,该兴趣小组首先选用“×10”欧姆挡,其阻值如图(甲)中指针所示,为了减小多用电表的读数误差,多用电表的选择开关应换用 欧姆挡;②按正确的操作程序再一次用多用电表测量该待测电阻的阻值时,其阻值如图(乙)中指针所示,则Rx的阻值大约是 Ω;③在用伏安法测量该电阻的阻值时,要求尽可能准确,并且待测电阻的电压从零开始可以连续调节,则在上述提供的器材中电压表应选 ;电流表应选 ;滑动变阻器应选 .(填器材前面的字母代号)④在图(丙)虚线框内画出用伏安法测量该电阻的阻值时的实验电路图.14.(8分)(2022秋•成都校级期末)实验室有如下器材:电流表A1(满偏电流约500μA,有刻度无刻度值,内阻rg约500Ω);电流表A2(量程0~300μA,内阻rA2=1000Ω);电流表A3(量程0~1mA,内阻rA3=100Ω);定值电阻R0(阻值1kΩ);滑动变阻器R(0~5Ω,额定电流2A);电池(电动势2V,内阻不计);开关、导线若干.要求较精确地测出A1表的内阻和满偏电流.(1)在方框内画出测量电路;(2)应读取的物理量是 ;(3)用这些量表示的A1表的满偏电流Ig= ,A1表的内阻rg= . 三、解答题(本题共4小题,满分46分.解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.)-24-15.(10分)(2022秋•灵宝市校级期中)如图所示,质量M=2kg的木块套在水平杆上,并用轻绳与质量m=kg的小球相连.今用跟水平方向成α=30°角的力F=10N拉着球带动木块一起向右匀速运动,运动中M、m的相对位置保持不变,g=10m/s2,求运动过程中轻绳与水平方向的夹角θ及木块M与水平杆间的动摩擦因数.16.(10分)(2022•大观区校级模拟)如图所示,一长为6L的轻杆一端连着质量为m的小球,另一端固定在铰链O处(轻杆可绕铰链自由转动).一根不可伸长的轻绳一端系于轻杆的中点,另一端通过轻小定滑轮连接在质量M=12m的小物块上,物块放置在倾角θ=30°的斜面上.已知滑轮距地面A点的距离为3L,铰链距离A点的距离为L,不计一切摩擦.整个装置由图示位置静止释放,当轻杆被拉至竖直位置时,求(1)小球对轻杆在竖直方向的作用力;(2)轻绳对轻杆做的功.17.(12分)如图所示的电路中,电源电动势E=9V,电阻R1=2Ω,R2=3Ω,当电阻箱Rx调到3Ω时,电流表的示数为2A.(电表理想处理)求:(1)电源的内电阻;(2)调节电阻箱,使电流表的示数为1.8A时,电阻R2消耗的电功率.(3)Rx取多大值时R1上消耗的功率最大,最大功率为多少?18.(14分)(2022•山东)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m电量为﹣q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.-24- -24-2022-2022学年湖南省长沙市长郡中学高三(上)周测物理试卷(11月份)(2)参考答案与试题解析 一、选择题(本题包括12小题,每小题4分,共48分.每小题给出的四个选项中,1-8只有一个选项正确,9-12有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(4分)如图中四幅图片涉及物理学史上的四个重大发现.其中说法不正确的有( ) A.卡文迪许通过扭秤实验,测定出了引力常量 B.奥斯特通过实验研究,发现了电流周围存在磁场 C.法拉第通过实验研究,总结出法拉第电磁感应定律 D.牛顿根据理想斜面实验,提出力不是维持物体运动的原因考点:物理学史.专题:常规题型.分析:根据物理学史和常识解答,记住著名物理学家的主要贡献即可.解答:解:A、卡文迪许通过扭秤实验,测定出了引力常量,故A正确;B、奥斯特通过实验研究,发现了电流周围存在磁场,故B正确;C、法拉第通过实验研究,总结出法拉第电磁感应定律,故C正确;D、伽利略根据理想斜面实验,提出力不是维持物体运动的原因,故D错误;本题选不正确的,故选:D.点评:本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一. -24-2.(4分)(2022•无为县校级模拟)用水平力F拉着一物体在水平地面上做匀速运动,从某时刻起力F随时间均匀减小,物体所受的摩擦力f随时间t变化如图中实线所示.下列说法正确的是( ) A.F是从t1时刻开始减小的,t2时刻物体的速度刚好变为零 B.F是从t1时刻开始减小的,t3时刻物体的速度刚好变为零 C.F是从t2时刻开始减小的,t2时刻物体的速度刚好变为零 D.F是从t2时刻开始减小的,t3时刻物体的速度刚好变为零考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:用水平力F拉着一物体在水平地面上做匀速运动,从某时刻起力F随时间均匀减小,物体先做减速运动,所受摩擦力为滑动摩擦力,当物体速度为零后,物体受静摩擦力.解答:解:从图中看出,摩擦力从t2时刻开始逐渐减小,t1~t2时间内不变,知F从t1时刻开始减小的,做减速运动,受滑动摩擦力,所以在t1~t2时间内摩擦力的大小不变.t2时刻物体的速度刚好变为零,然后摩擦力变为静摩擦力,大小随F的变化而变化.故A正确,B、C、D错误.故选A.点评:解决本题的关键知道物体做匀速直线运动,拉力减小后,先做减速运动,最终静止. 3.(4分)(2022•思明区校级模拟)显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是( ) A.B.C.D.考点:带电粒子在匀强电场中的运动.-24-专题:带电粒子在电场中的运动专题.分析:根据左手定则判断电子所受的洛伦兹力的方向,确定电子的偏转方向.根据半径公式r=分析电子流打在荧光屏上位置的变化.解答:解:A、在前半个周期内,磁场方向向外,由左手定则判断可知,电子向上偏转打在a点,B减小,由r=分析可知半径增大,电子流打在荧光屏上位置向下移动;在后半个周期内,磁场方向向里,由左手定则判断可知,电子向下偏转,B增大,由r=分析可知半径减小,电子流打在荧光屏上位置向下移动;故电子流打在荧光屏上的位置可以由a点逐渐移动到b点.故A正确.B、在前半个周期内,磁场方向向外,由左手定则判断可知,电子向上偏转打在a点,B减小,由r=分析可知半径增大,电子流打在荧光屏上位置向下移动;在后半个周期内,磁场方向向外,由左手定则判断可知,电子向上偏转,B增大,由r=分析可知半径减小,故电子流打在荧光屏上的位置可以由a点逐渐移动到O点,再由O点回到a点.故B错误.C、D在前半个周期内,磁场方向向里,由左手定则判断可知,电子向下偏转打在b点,故CD错误.故选A点评:本题只要掌握左手定则和半径公式r=,就能轻松解答.要注意运用左手定则时,四指指向电子运动的相反方向. 4.(4分)(2022•甘肃一模)将电动车的前轮装有发电机,发电机蓄电池连接.当在骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500J的初动能在粗糙的水平路面上滑行,第一次关闭自充电装置,让车自由滑行,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是( ) A.200JB.250JC.300JD.500J考点:能量守恒定律.分析:根据能量转化与守恒定律分析两种情况能量的转化情况:第一次关闭自充电装置,让车自由滑行,其动能全部转化为摩擦产生的内能;第二次启动自充电装置,其动能转化为摩擦产生的内能和蓄电池所充的电能.研究第一次自动滑行过程,根据功能关系求出摩擦力的大小,再根据能量守恒定律求解第二次向蓄电池所充的电能.解答:解:第一次关闭自充电装置,让车自由滑行过程,由图读出:位移大小为x1=10m-24-,初动能为500J,末动能为0,根据功能关系得到,fx=Ek,则滑动摩擦力大小f==.第二次启动自充电装置,让车自由滑行过程,由图读出:位移大小为x2=6m,初动能为500J,末动能为0,根据能量守恒定律得,Ek=fx2+E,得到第二次向蓄电池所充的电能E=Ek﹣fx2=500J﹣50×6J=200J故选A点评:本题首先要搞清两种情况下能量是如何转化的,其次要抓住两种情况的联系:滑动摩擦力大小不变. 5.(4分)(2022•上海模拟)如图所示,绝缘杆两端固定带电小球A和B,轻杆处于水平向右的匀强电场中,不考虑两球之间的相互作用.初始时杆与电场线垂直,将杆右移的同时顺时针转过90°,发现A、B两球电势能之和不变.根据如图给出的位置关系,下列说法正确的是( ) A.A一定带正电,B一定带负电 B.A、B两球带电量的绝对值之比qA:qB=1:2 C.A球电势能一定增加 D.电场力对A球和B球都不做功考点:电势能.专题:电场力与电势的性质专题.分析:解决本题的关键是:理解“A、B两球电势能之和不变”的物理含义:电场力对系统做功为零;根据电场力做功特点进一步求解.解答:解:A、电场力对系统做功为零,因此A、B电性一定相反,A可能带正电,也可能带负电,故A错误;B、电场力对A、B做功大小相等,方向相反,所以有:EqB×L=EqA×2L,因此qA:qB=1:2,故B正确;C、B的电性不确定,无法判断其电势能的变化,故C错误;D、电场力对A、B都做功,代数和为零,故D错误.故选B.点评:正确分析题意,把握关键信息,挖掘隐含条件,往往是解题的关键. 6.(4分)(2022秋•武汉校级月考)在长度为l、横截面积为S、单位体积内的自由电子数为n的金属导体两端加上电压,导体中就会产生匀强电场.导体内电量为e的自由电子受电场力作用下先做加速运动,然后与做热运动的阳离子碰撞而减速,如此往复…所以,我们通常将自由电子的这种运动简化成速率为v(不随时间变化)的定向运动.已知阻碍电子运动的阻力大小与电子定向移动的速率v成正比,即f=kv(k是常数),则该导体的电阻应该等于( )-24- A.B.C.D.考点:欧姆定律.分析:由电场力与阻力相等可得出电压的表达式;再由电流的微观表达式可得出电流;由欧姆定律即可求得电阻.解答:解:电子在电场中受到的电场力大小为:;由题意可知:=kv;解得:U=;电流I=nevs;则由欧姆定律可得:R==;故选:B.点评:本题给出的信息较多,应注意通过分析题目找出有用的信息,从而建立合理的物理模型进行求解. 7.(4分)(2022•海淀区模拟)如图所示,质量相同的木块A、B,用轻弹簧连接置于光滑水平面上,开始弹簧处于自然状态,现用水平恒力F推木块A,则弹簧在第一次被压缩到最短的过程中( ) A.当A、B速度相同时,加速度aA=aB B.当A、B速度相同时,加速度aA>aB C.当A、B加速度相同时,速度vA<vB D.当A、B加速度相同时,速度vA>vB考点:牛顿第二定律;匀变速直线运动的位移与时间的关系;胡克定律.专题:牛顿运动定律综合专题.分析:在弹簧被压缩的过程中,A的合力在减小,加速度在减小,开始A的加速度大于B的加速度,A的速度大于B的速度,可以比较出加速度相等时两物体的速度大小;在运动的过程中B的加速度一直在增加,从而可以比较出速度相同时,两物体的加速度大小.解答:解:用水平恒力F推木块A,弹簧的弹力逐渐增大,A的合力减小,B的合力增大,则A的加速度逐渐减小,而B的加速度逐渐增大.在aA=aB之前,A的加速度总大于B的加速度,所以aA=aB时,vA>vB.此后A的加速度继续减小,B的加速度继续增大,所以vA=vB时,aB>aA.故D正确,A、B、C错误.故选D.点评:解决本题的关键能够正确地进行受力分析,得出加速度的方向以及大小的变化,根据加速度方向与速度方向的关系判断速度的变化. 8.(4分)(2022•重庆模拟)在研究微型电动机的性能时,应用如图所示的实验电路.当调节滑动变阻器R并控制电动机停止转动时,电流表和电压表的示数分别为0.50A-24-和2.0V.重新调节R并使电动机恢复正常运转,此时电流表和电压表的示数分别为2.0A和24.0V.则这台电动机正常运转时输出功率为( ) A.47WB.44WC.32WD.48W考点:电功、电功率;闭合电路的欧姆定律.专题:恒定电流专题.分析:从电路图中可以看出,电动机和滑动变阻器串联,电压表测量电动机两端的电压,电流表测量电路电流,根据公式R=可求电动机停转时的电阻;利用公式P=UI可求电动机的总功率,根据公式P=I2R可求电动机克服本身阻力的功率,总功率与电动机克服自身电阻功率之差就是电动机的输出功率.解答:解:电动机的电阻R===4Ω;电动机的总功率P=U1I1=24V×2A=48W;克服自身电阻的功率PR=I12R=(2A)2×4Ω=16W;电动机正常运转时的输出功率是P输出=P﹣PR=48W﹣16W=32W.故选C.点评:本题考查电阻、功率的有关计算,关键是明白电路中各个用电器的连接情况,要知道非纯电阻电路的功率的计算方法,这是本题的重点和难点. 9.(4分)(2022秋•沅陵县校级月考)如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ.现给环一个水平向右的恒力F,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F1=kv,其中k为常数,则圆环运动过程中( ) A.最大加速度为B.最大加速度为 C.最大速度为D.最大速度为考点:牛顿第二定律;力的合成与分解的运用;共点力平衡的条件及其应用.专题:牛顿运动定律综合专题.分析:根据力F1与重力mg的关系分析圆环的运动性质与运动过程,应用平衡条件与牛顿第二定律分析答题.解答:解:A、当F1=mg,即:kv=mg,v=-24-时,圆环水平方向不受摩擦力,则圆环的加速度最大为a=,A正确B错误;C、当滑动摩擦力f=μ(kv﹣mg)=F时,对应的速度最大,v=,C正确D错误;故选:AC.点评:本题考查了求最大加速度、最大速度问题,对圆环正确受力分析、分析清楚圆环运动过程是正确解题的前提与关键,应用牛顿第二定律即可正确解题;要讨论F与mg的关系,然后根据各种情况答题,这是容易出错的地方. 10.(4分)(2022秋•友谊县校级月考)我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速圆周运动,运行的周期为T.若以R表示月球的半径,则( ) A.卫星运行时的向心加速度为 B.卫星运行时的线速度为 C.物体在月球表面的重力加速度为 D.月球的第一宇宙速度为考点:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.专题:人造卫星问题.分析:探测卫星绕月做匀速圆周运动,根据公式a=r求向心加速度.根据公式v=求线速度,.根据万有引力提供向心力,去求第一宇宙速度.根据万有引力等于重力,求月球表面重力加速度.解答:解:A、卫星运行时的向心加速度为:a=r=(R+h).故A正确.B、卫星运行时轨道半径为r=R+h,其线速度为:v==.故B正确.C、根据万有引力等于重力,得:G=mg,g==,故C错误.-24-D、对于探测卫星,根据万有引力提供向心力为:G=m(R+h).对于近月卫星,有:G=m′联立解得:月球的第一宇宙速度为:v=2π,故D正确.故选:ABD点评:解决本题的关键掌握万有引力提供向心力,以及万有引力等于重力,运用万有引力定律和圆周运动规律结合研究. 11.(4分)(2022春•琼海期中)以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( ) A.此时小球的竖直分速度大小等于水平分速度大小 B.此时小球的速度大小为 C.小球运动的时间为 D.此时小球速度的方向与位移的方向相同考点:平抛运动.专题:平抛运动专题.分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据竖直位移和水平位移相等求出运动的时间,从而得出竖直分速度的大小,结合平行四边形定则求出小球的速度大小.解答:解:A、根据得,平抛运动的时间t=.则竖直分速度vy=gt=2v0≠v0.故A错误,C正确.B、根据平行四边形定则知,小球的速度=.故B正确.D、小球速度方向与水平方向夹角的正切值,位移与水平方向夹角的正切值tan,可知tanα=2tanθ,则小球速度方向与位移方向不同.故D错误.故选:BC.点评:解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式灵活求解.-24- 12.(4分)如图所示,C1=6μF,C2=3μF,R1=3Ω,R2=6Ω,电源电动势E=18V,内阻不计.下列说法正确的是( ) A.开关S断开时,a、b两点电势相等 B.开关S闭合后,a、b两点间的电流是2A C.开关S断开时C1带的电荷量比开关S闭合后C1带的电荷量大 D.不论开关S断开还是闭合,C1带的电荷量总比C2带的电荷量大考点:电容;闭合电路的欧姆定律.专题:电容器专题.分析:明确电路结构,根据开关通断时的不同状态分析电容器两端的电压;由Q=UC分析电容中的电量.解答:解:A、开关断开时,两电容器均直接接在电源两端;故电容器两端的电压等于电源的电动势;a点接电源的正极,b接电源的负极;故ab两点电势不相等;故A错误;B、开关闭合后,两电阻串联,由闭合电路欧姆定律可知,电流I==2A;故B正确;C、开关断开时,电容器两端的电压为18V,而开关闭合后,其电压为R1两端的电压,故电压减小,电荷量减小;故C正确;D、当开关闭合时,C1两端的电压U1=2×3=6V;C2两端的电压为:U2=2×6=12V;则Q1=U1C1=6×6×10﹣6=3.6×10﹣5C;Q2=U2C2=12×3×10﹣6=3.6×10﹣5C;故D错误故选:BC.点评:本题考查闭合电路欧姆定律中的含容电路,要注意正确分析电路,明确电路结构;并熟练应用电容器的特点进行分析. 二、实验题(共16分)13.(8分)(2022秋•西丰县期中)某兴趣小组为了测量一待测电阻Rx的阻值,准备先用多用电表粗测出它的阻值,然后再用伏安法精确地测量.实验室里准备了以下器材:A.多用电表B.电压表Vl,量程3V,内阻约5kΩC.电压表V2,量程15V,内阻约25kΩD.电流表Al,量程0.6A,内阻约0.2ΩE.电流表A2,量程3A,内阻约0.04ΩF.电源,电动势E=4.5VG.滑动变阻器Rl,最大阻值5Ω,最大电流为3AH.滑动变阻器R2,最大阻值200Ω,最大电流为1.5AI.电键S、导线若干-24-①在用多用电表粗测电阻时,该兴趣小组首先选用“×10”欧姆挡,其阻值如图(甲)中指针所示,为了减小多用电表的读数误差,多用电表的选择开关应换用 ×1 欧姆挡;②按正确的操作程序再一次用多用电表测量该待测电阻的阻值时,其阻值如图(乙)中指针所示,则Rx的阻值大约是 9 Ω;③在用伏安法测量该电阻的阻值时,要求尽可能准确,并且待测电阻的电压从零开始可以连续调节,则在上述提供的器材中电压表应选 B ;电流表应选 D ;滑动变阻器应选 G .(填器材前面的字母代号)④在图(丙)虚线框内画出用伏安法测量该电阻的阻值时的实验电路图.考点:伏安法测电阻.专题:实验题.分析:(1)欧姆表读数时,由于中间附近的刻度最均匀,故要使指针指在中间附近;(2)欧姆表读数等于刻度盘读数乘以倍率;(3)用伏安法测定电阻的原理是电阻定义式R=.根据电源的电动势,选择电压表的量程.由电源的电动势与测电阻的大约值,估算电流的最大值,选择电流表的量程.根据待测电阻与变阻器总阻值的大小,选择变阻器的规格.(4)根据两电表内阻与待测电阻的大小关键,选择电流表的内接法或外接法.(3)由图示电表确定其量程与分度值,然后读出其示数.解答:解:(1)甲图指针偏向右侧,读数误差大,故选择较低的挡位(×1档);(2)欧姆表读数=刻度盘读数×倍率,所以欧姆表的读数是9Ω.(3)电池组的电动势是4.5V,电压表的量程选3V,即选择电压表B.金属导线的电阻约为5Ω左右,则通过导线的电流最大值约为:Imax=A.故电流表选D.为能够让待测电阻的电压从零开始可以连续调节,滑动变阻器应选G.(4)由题意可知:,,电流表应采用外接法.-24-为能够让待测电阻的电压从零开始可以连续调节,所以要使用分压式电路.故电路图如图.故答案为:(1)×1;(2)9;(3)B,D,G;(4)如图点评:本题考查了欧姆表的使用与实验器材的选择、电流表的接法、电表读数;对电表读数时要先确定其量程与分度值. 14.(8分)(2022秋•成都校级期末)实验室有如下器材:电流表A1(满偏电流约500μA,有刻度无刻度值,内阻rg约500Ω);电流表A2(量程0~300μA,内阻rA2=1000Ω);电流表A3(量程0~1mA,内阻rA3=100Ω);定值电阻R0(阻值1kΩ);滑动变阻器R(0~5Ω,额定电流2A);电池(电动势2V,内阻不计);开关、导线若干.要求较精确地测出A1表的内阻和满偏电流.(1)在方框内画出测量电路;(2)应读取的物理量是 A1表满偏时,A2表的读数I2、A3表的读数I3 ;(3)用这些量表示的A1表的满偏电流Ig= I3﹣I2 ,A1表的内阻rg= .考点:伏安法测电阻.专题:实验题.分析:测量电阻基本的原理是伏安法,本实验中没有电压表,而已知内阻的电表表既可测出电流,电流与其内阻的乘积又测得电压,所以可以将电流表A2作为电压表与待测电流表并联,电流表A3测量它们的总电流,即可测出A1表的内阻和满偏电流.变阻器总电阻很小,为方便调节,应采用分压式接法.根据欧姆定律和并联电路的特点求得A1表的内阻rg.解答:解:(1)要测量A1表的内阻,需测出通过A1表的电流和它两端的电压U1.A1表没有刻度值,所以不能直接读出满偏电流,要通过A2、A3才能间接测得.U1m=Igrg≈(5×10﹣4×500)V=0.25V,因A2、A3表的内阻是确定值,故可以把它们当做电压表.A3表的电压量程U3=Ig3•rA3=0.1V<U1m,A2表的电压量程U2=Ig2•rA2=0.3V>U1m-24-,所以应选择A2与A1并联,这样A2表两端的电压就是U1.若A3直接与A1、A2串联接在滑动变阻器的分压端,电压小于(U1m+U3)=0.35V,滑动变阻器调节不方便,所以可再串联一个定值电阻R0.电路图如图所示:(2)应读取的物理量是:A1表满偏时,A2表的读数I2、A3表的读数I3.(3)A1表的满偏电流Ig=I3﹣I2,根据并联电路的特点可知:(I3﹣I2)rg=I2RA2解得,rg=故答案为:(1)电路如图所示;(2)A1表满偏时A2表的读数I2、A3表的读数I3;(3)I3﹣I2;点评:本题考查了实验器材的选择、设计实验电路、求满偏电流与内阻,知道实验原理、根据实验器材、应用并联电路特点与欧姆定律即可正确解题,理解测量电阻的基本原理,知道已知内阻的电流表双重作用,能灵活选择实验方法. 三、解答题(本题共4小题,满分46分.解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.)15.(10分)(2022秋•灵宝市校级期中)如图所示,质量M=2kg的木块套在水平杆上,并用轻绳与质量m=kg的小球相连.今用跟水平方向成α=30°角的力F=10N拉着球带动木块一起向右匀速运动,运动中M、m的相对位置保持不变,g=10m/s2,求运动过程中轻绳与水平方向的夹角θ及木块M与水平杆间的动摩擦因数.考点:共点力平衡的条件及其应用;摩擦力的判断与计算.专题:共点力作用下物体平衡专题.分析:以小球为研究对象,分析受力,作出力图,根据平衡条件求解轻绳与水平方向夹角θ;以木块和小球组成的整体为研究对象,分析受力情况,由平衡条件和摩擦力公式求解木块与水平杆间的动摩擦因数μ.解答:解:设细绳对B的拉力为T.以小球为研究对象,分析受力,作出力图如图1,由平衡条件可得:Fcos30°=Tcosθ①-24-Fsin30+Tsinθ=mg②代入解得:T=10Ntanθ=,即θ=30°再以木块和小球组成的整体为研究对象,分析受力情况,如图2.再平衡条件得:Fcos30°=fN+Fsin30°=(M+m)g又f=μN得到:μ=代入解得:μ=答:运动过程中轻绳与水平方向的夹角θ为30°,木块M与水平杆间的动摩擦因数.点评:本题涉及两个物体的平衡问题,研究对象的选择要灵活,此题采用隔离法与整体相结合的方法,也可以就采用隔离法研究. 16.(10分)(2022•大观区校级模拟)如图所示,一长为6L的轻杆一端连着质量为m的小球,另一端固定在铰链O处(轻杆可绕铰链自由转动).一根不可伸长的轻绳一端系于轻杆的中点,另一端通过轻小定滑轮连接在质量M=12m的小物块上,物块放置在倾角θ=30°的斜面上.已知滑轮距地面A点的距离为3L,铰链距离A点的距离为L,不计一切摩擦.整个装置由图示位置静止释放,当轻杆被拉至竖直位置时,求(1)小球对轻杆在竖直方向的作用力;(2)轻绳对轻杆做的功.考点:功的计算;物体的弹性和弹力;作用力和反作用力.-24-专题:功的计算专题.分析:(1)当轻杆被拉至竖直位置时,小球的速度是物块的速度的2倍,根据几何关系求出物块下滑的距离,由机械能守恒定律求出小球的速度,小球在最高点,由牛顿第二定律即可求解;(2)对小球和轻杆,根据动能定理列式即可求解.解答:解:(1)当轻杆被拉至竖直位置时,设物块的速度为v,则小球的速度v′=2v,根据几何关系可知,物块下滑的距离s=4L,由机械能守恒定律得:Mgssinθ﹣mg•6L=解得:v=小球在最高点,由牛顿第二定律得:mg+F=m解得:F=,根据牛顿第三定律,小球对轻杆在竖直方向的作用力为F′=F=,方向竖直向上.(2)对小球和轻杆,根据动能定理得:W﹣mg•6L=解得:W=答:(1)小球对轻杆在竖直方向的作用力大小为,方向竖直向上;(2)轻绳对轻杆做的功为.点评:本题主要考查了牛顿第二定律、机械能守恒定律、动能定理的直接应用,要求同学们能正确分析物体的运动情况和受力情况,选择合适的过程和对象运用动能定理求解,难度适中. 17.(12分)如图所示的电路中,电源电动势E=9V,电阻R1=2Ω,R2=3Ω,当电阻箱Rx调到3Ω时,电流表的示数为2A.(电表理想处理)求:(1)电源的内电阻;(2)调节电阻箱,使电流表的示数为1.8A时,电阻R2消耗的电功率.(3)Rx取多大值时R1上消耗的功率最大,最大功率为多少?-24-考点:电功、电功率.专题:恒定电流专题.分析:(1)先求出外电路总电阻,应用闭合电路欧姆定律,即可求出电源的内电阻.(2)当电流表示数为1.6A时,由闭合电路欧姆定律可求出路端电压,再减去R1两端的电压即为电阻R2两端的电压.解答:解:(1)Rx与R2并联电阻R2X=Ω=1.5Ω由闭合电路欧姆定律知:E=I1(R1+R2X+r)代入数据解得:r=﹣R1﹣R2X=1Ω(2)当电流表示数为1.8A时,由闭合电路欧姆定律知:路端电压:U=E﹣I2r=10﹣1.8×1=8.2V对R1,由欧姆定律知U1=I2R1=1.8×2.5=4.5V此时Rz两端的电压:U2=U﹣U1=8.2﹣4.5=3.7V电阻R2消耗的电功率为:P==4.32W(3)Rx取0时R1上消耗的功率最大,最大功率为:,其中I=,代入数据解得:P1=18W答:(1)电源的内电阻1Ω;(2)调节电阻箱,使电流表的示数为1.8A时,电阻R2消耗的电功率4.32W.(3)Rx取0时R1上消耗的功率最大,最大功率为18W点评:对于直流电路的计算问题,首先要了解电路的连接关系,再分析各部分电压和电流的关系,运用欧姆定律求出需要的物理量. 18.(14分)(2022•山东)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0-24-.在t=0时刻将一个质量为m电量为﹣q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动.专题:压轴题;带电粒子在磁场中的运动专题.分析:(1)粒子在匀强电场中做匀加速直线运动,电场力做功等于粒子动能的增加;(2)使粒子不与极板相撞,则运动的半径大于;(3)粒子在t=3T0时刻再次到达S2,且速度恰好为零,则从s1再次进入电场时的时刻是,粒子从左向右应是水平匀速穿过无场区,距离为d,根据匀速运动的规律求得时间,粒子在左右磁场中的时间是相等的,粒子在左右磁场中的时间是相等的且都是半个周期,所以粒子运动的总时间是一个周期,即t′=T;然后根据洛伦兹力提供向心力,即可求得磁感应强度.解答:解:(1)粒子在匀强电场中电场力做功等于粒子动能的增加,得:代入数据,得:又:,联立以上两式,得:(2)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即:,得:-24-使粒子不与极板相撞,则运动的半径联立以上两式,得:(3)粒子在t=3T0时刻再次到达S2,且速度恰好为零,根据运动的对称性,则从s1再次进入电场时的时刻是;粒子从左向右应是水平匀速穿过无场区,距离为d,时间为:粒子在左右磁场中的时间是相等的,粒子在磁场中运动的总时间:粒子在左右磁场中的时间是相等的且都是半个周期,所以粒子运动的总时间是一个周期,即t′=T;粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,得:,vT=2πr联立以上公式得:.答:(1)粒子到达S2时的速度和极板间距;(2)磁感应强度的大小应满足的条件;(3)粒子在磁场内运动的时间,磁感应强度的.点评:该题中粒子在左右磁场中的时间是相等的,在电场中加速和减速的时间也是相等的,是这解题的关键.该题解题的过程复杂,公式较多,容易在解题的过程中出现错误.属于难度大的题目.-24-