【2022版中考12年】上海市2022-2022年中考数学试题分类解析专题7统计与概率一、选择题1.(上海市2022年3分)六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为【】A、3 B、4 C、5 D、6【答案】B。【考点】中位数。【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据的中位数为:。故选B。2.(上海市2022年Ⅱ组4分)从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌恰好是黑桃的概率是【】A.B.C.D.13.(上海市2022年4分)某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是【】A.22°C,26°CB.22°C,20°CC.21°C,26°CD.21°C,20°C【答案】D。【考点】中位数,众数。【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为20、20、21、23、26,∴中位数为:21。众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是20,故16\n这组数据的众数为20。故选D。4.(2022上海市4分)数据5,7,5,8,6,13,5的中位数是【】 A.5B.6C.7D.8【答案】B。【考点】中位数。【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为5,5,5,6,7,8,13,∴中位数为:6。故选B。5.(2022年上海市4分)数据0,1,1,3,3,4的中位数和平均数分别是【】(A)2和2.4(B)2和2(C)1和2(D)3和2二、填空题1.(上海市2022年2分)某出租车公司在“五一”长假期间平均每天的营业额为5万元,由此推断5月份的总营业额约为5×31=155(万元)根据所学的统计知识,你认为这样的推断是否合理?答:▲.【答案】不合理。【考点】抽样调查的可靠性,用样本估计总体。【分析】用样本来估计总体时,样本选择一定要具有代表性及普遍性、代表性、随机性,“五一”长假期间的营业额较多,不能代表这一个月;所以用五一”长假期间平均每天的营业额推断5月份的总营业额是不合理的。2.(上海市2022年2分)一个射箭运动员连续射靶5次,所得环数分别是8,6,7,10,9,则这个运动员所得环数的标准差为▲。16\n3.(上海市2022年4分)为了了解某所初级中学学生对2022年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有▲名学生“不知道”.【答案】30。【考点】频数、频率和总量的关系,样本估计总体。【分析】根据频数、频率和总量的关系,随机抽查的80名学生中“不知道”的占;根据样本估计总体的方法估计该校全体学生中对“限塑令”约有名学生“不知道”。4.(上海市2022年4分)如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是▲.【答案】。【考点】概率。【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是。5.(上海市2022年4分)若将分别写有“生活”、“城市”的2张卡片,随机放入“□让□更美好”中的两个□内(每个□只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是▲【答案】。【考点】概率。16\n6.(上海市2022年4分)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是▲.【答案】。【考点】概率。【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。这里一、二、三等品总数为8只,一等品5只,从而从中随机抽取1只杯子,恰好是一等品的概率是。7.(2022上海市4分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是▲.【答案】。【考点】概率公式。【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。因此,∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:。8.(2022上海市4分)某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表的信息,可测得测试分数在80~90分数段的学生有▲名.【答案】150。【考点】频率分布表,频数、频率和总量的关系。【分析】∵80~90分数段的频率为:1﹣0.2﹣0.25﹣0.25=0.3,∴该分数段的人数为:500×0.3=150名。16\n9.(2022年上海市4分)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为▲.【答案】。10.(2022年上海市4分)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为▲.【答案】40%。【考点】条形统计图,频数、频率和总量的关系。【分析】从条形统计图可知:甲、乙、丙、丁四个兴趣小组的总人数为200人,甲、丙两个小组的人数为80人,所以报名参加甲组和丙组的人数之和占所有报名人数的百分比为80÷200×100%=40%。三、解答题1.(上海市2022年7分)某校在六年级和九年级男生中分别随机抽取20名男生测量他们的身高,绘制的频数分布直方图如图所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数,该根据该图提供的信息填空:16\n (1)六年级被抽取的20名男生身高的中位数所在组的范围是__________厘米;九年级被抽取的20名男生身高的中位数所在组的范围是__________厘米. (2)估计这所学校九年级男生的平均身高比六年级男生的平均身高高__________厘米. (3)估计这所学校六、九两个年级全体男生中,身高不低于153厘米且低于163厘米的男生所占的百分比是__________.【答案】解:(1)148~153;168~173。 (2)18.6. (3)22.5%。【考点】频数分布直方图,中位数,平均数,用样本估计总体。【分析】(1)根据频数分布直方图得到两个年级中第10个和第11个数据的平均数,从而可以判断出其中位数所落在的范围。(2)根据直方图可得两个年级男生身高的平均数,相减可得答案:九年级男生的平均身高为170.4,六年级男生的平均身高为151.8,则九年级男生的平均身高比六年级男生高:170.4-151.8=18.6。(3)首先得到身高不低于153厘米且低于163厘米的男生人数,再计算所占的百分比:身高不低于153厘米且低于163厘米的男生有(4+4+1)=9人,则其所占的百分比是(4+4+1)÷40=22.5%。2.(上海市2022年7分)某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级。为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示。试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是,培训后考分的中位数所在的等级是。(2)这32名学生经过培训,考分等级“不合格”的百分比由下降到。16\n(3)估计该校整个初二年级中,培训后考分等级为“合格”、“优秀”的学生共有名。(4)你认为上述估计合理吗?理由是什么?答:,理由:。【答案】解:(1)不合格,合格。(2)75%,25%。(3)240。(4)合理,该样本是随机样本(或该样本具有代表性)。【考点】条形统计图,中位数,频数、频率和总量的关系,用样本估计总体。【分析】(1)根据中位数的概念,32个数据的中位数应是第16个和第17个数据的平均数,根据图中的数据进行分析。(2)根据统计图中的数据,利用频数、频率和总量的关系:百分比=各个项目的具体数据÷总数进行计算:培训前考分等级“不合格”的百分比为24÷32=75%;培训后考分等级“不合格”的百分比为8÷32=25%。(3)根据样本中合格与优秀所占的百分比估算出总体中的人数:(1-25%)×320=240(人)。(4)合理,因为样本具有代表性。3.(上海市2022年7分)某区从参加数学质量检测的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一:随后汇总整个样本数据,得到部分结果,如表二。表一表二16\n请根据表一、表二所示信息回答下列问题:(1)样本中,学生数学成绩平均分为_____________分(结果精确到0.1);(2)样本中,数学成绩在分数段的频数为____________,等级为A的人数占抽样学生总人数的百分比为________________,中位数所在的分数段为___________;(3)估计这8000名学生数学成绩的平均分约为____________分(结果精确到0.1)。(2)用40%×180就可以得到数学成绩在84-96分数段的频数,等级为A的人数为63,而总人数为180,所以等级为A的人数占抽样学生总数的百分比可以用63÷180计算得到。(3)用样本去估计总体的思想就可以得到8000名学生成绩的平均分数。4.(上海市2022年10分)小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2022年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:月用电量(度)电费(元)1月9051.802月9250.8516\n3月9849.244月10548.555月(1)计算5月份的用电量和相应电费,将所得结果填入表中;(2)小明家这5个月的月平均用电量为 度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.【答案】解:(1)65+45=110,45×0.61+65×0.3=46.95。(2)99。(3)小明家这5个月的月平均用电量呈上升趋势;这5个月每月电费呈下降趋势。(4)设平时段x度,谷时用(500-x)度,则0.61x+0.3(500-x)=243,解得x=300,500-x=200。答:平时段用电300度,谷时用电200度。【考点】统计表,折线统计图,算术平均数,一元一次方程的应用,用样本估计总体。【分析】(1)从折线图中可看出用电度数是平时段和谷时段的和所以第一空填65+45=110,电费则是16\n45×0.61+65×0.3=46.95。(2)用平均公式求即可:(90+92+98+105+110)÷5=99。(3)读表格获取信息。(4)设出平时段,谷时段的用电量列出方程求解即可。5.(上海市2022年10分)某市在中心城区范围内,选取重点示范路口进行交通文明状况满意度调查,将调查结果的满意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识。今年五月发布的调查结果中,橙色与黄色标识路口数之和占被调查路口总数的15%。结合未画完整的图中所示信息,回答下列问题;(1)此次被调查的路口总数是___________(3分);(2)将图中绿色标识部分补画完整,并标上相应的路口数(4分);(3)此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随机样本(3分)?答:__________________________________________.数;9÷15%=60。(2)根据总数计算绿色标识,补图。(3)根据样本是否具有代表性进行判断,因为所抽取的样本不具有代表性,所以此次被调查路口的满意度不能作为该市所有路口交通文明状况满意度的一个随机样本。6.(上海市2022年10分)初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表所示.请根据上述信息,回答下列问题:16\n(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(4分)(2)根据具体代表性的样本,把图中的频数分布直方图补画完整;(3分)(3)在具有代表性的样本中,中位数所在的时间段是小时/周.(3分)时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)【答案】解:(1)小杰;1.2。(2)直方图如图:(3)0~1。【考点】频数分布表,频数分布直方图,抽样调查的可靠性,中位数。【分析】(1)小丽抽取的样本太片面,电脑爱好者上网时间一定多,所以不具代表性,而小杰抽取的样本是随机抽取具有代表性,所以估计该校全体初二学生平均每周上网时间为1.2小时。(2)结合频数分布中小杰的统计,把频数分布直方图补画完整。(3)根据中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.知中位数所在的时间段是0-1小时/周。7.(上海市2022年10分)某人为了了解他所在地区的旅游情况,收集了该地区2022至2022年每年的旅游收入及入境旅游人数(其中缺少2022年入境旅游人数)的有关数据,整理并分别绘成图1,图2.16\n图2根据上述信息,回答下列问题:(1)该地区2022至2022年四年的年旅游收入的平均数是亿元(3分);(2)据了解,该地区2022年、2022年入境旅游人数的年增长率相同,那么2022年入境旅游人数是万(4分);(3)根据第(2)小题中的信息,把图2补画完整(3分).【答案】解:(1)45。(2)220。(3)补图如下:16\n【考点】折线统计图,条形统计图,平均数,方程的应用。【分析】(1)平均数是指在一组数据中所有数据之和再除以数据的个数。因此,该地区2022至2022年四年的年旅游收入的平均数是(10+30+50+90)÷4=45(亿元)。(2)设2022年入境旅游人数是万,则有,解得。(3)根据第(2)小题中的信息补图。8.(上海市2022年10分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表所示;各年级的被测试人数占所有被测试人数的百分率如图所示(其中六年级相关数据未标出).次数012345678910人数11223422201根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是(2分);(2)在所有被测试者中,九年级的人数是(3分);(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是(2分);(4)在所有被测试者的“引体向上”次数中,众数是(3分).【答案】解:(1)20%。(2)6。(3)35%。(4)5。【考点】扇形统计图,频数统计表,频数、频率和总量的关系。16\n=7÷20=35%。(4)由众数的概念知,在所有被测试者的“引体向上”次数中,做5次的人数最多为4人,故众数是5。9.(上海市2022年10分)某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图.(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的______%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?出口BC人均购买饮料数量(瓶)3215.已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?【答案】解:(1)60。(2)∵A出口的被调查游客总人数:1+3+2.5+2+1.5=10(万人),A出口的被调查游客购买饮料总数:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶),16\n∴A出口的被调查游客人均购买饮料数=。(3)设B出口人数为x万人,则C出口人数为(x+2)万人则有3x+2(x+2)=49,解之得x=9。∴设B出口游客人数为9万人。【考点】条形统计图,频数统计表,频数、频率和总量的关系,一元一次方程的应用。【分析】(1)由图知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人),而A出口的被调查游客总人数为:1+3+2.5+2+1.5=10(万人),所以购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的。(2)由A出口的被调查游客人均购买饮料数=即可求得。(3)方程的应用解题关键是找出等量关系,列出方程求解。本题等量关系为:B、C两个出口的被调查游客在园区内共购买49万瓶3x+2(x+2)=49。”的人有_______________名.16\n【答案】解:(1)12%。(2)36~45。(3)5%。(4)700.【考点】条形统计图,扇形统计图,中位数,频数、频率和总量的关系。总人数即可得出答案。16