星期一 (三角与立体几何问题) 2022年____月____日1.在△ABC中,角A,B,C所对的边分别是a,b,c,已知c=2,C=.(1)若△ABC的面积等于,求a,b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.解 (1)由余弦定理及已知条件得a2+b2-ab=4.又因为△ABC的面积等于,所以absinC=,得ab=4.联立方程组解得(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,所以sinBcosA=2sinAcosA.当cosA=0时,A=,所以B=,所以a=,b=.当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得所以△ABC的面积S=absinC=.2.如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.证明 (1)如图,在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.2\n又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.2