2022高考数学真题分类汇编三、不等式一、选择题1.(2022·全国甲(文)T12)已知,则()A.B.C.D.【答案】A【解析】【分析】根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.【详解】由可得,而,所以,即,所以.又,所以,即,所以.综上,.故选:A.2.(2022·全国甲(理)T12)已知,则()A.B.C.D.【答案】A【解析】【分析】由结合三角函数的性质可得;构造函数\n,利用导数可得,即可得解.【详解】因为,因为当所以,即,所以;设,,所以在单调递增,则,所以,所以,所以,故选:A3.(2022·新高考Ⅰ卷T7)设,则()A.B.C.D.【答案】C【解析】【分析】构造函数,导数判断其单调性,由此确定大小.【详解】设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,\n设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.4.(2022·新高考Ⅱ卷T12)对任意x,y,,则()A.B.C.D.【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;\n因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.