[第10讲 数列、等差数列、等比数列](时间:5分钟+40分钟)基础演练1.在各项都为正数的等比数列{an}中,a1=2,a6=a1a2a3,则公比q的值为( )A.B.C.2D.32.若等差数列{an}的前n项和为Sn,已知a5=8,S3=6,则a9=( )A.8B.12C.16D.243.已知数列{an}的前n项和为Sn,且满足an+2=2an+1-an,a5=4-a3,则S7=( )A.10B.12C.14D.204.等比数列{an}中,a2=1,a8=64,则a5=( )A.8B.12C.8或-8D.12或-125.如果数列{an}满足a1=2,an+1=an+2n,则数列{an}的通项公式an=________.提升训练6.设等差数列{an}的前n项和为Sn,若a2+a4=6,则S5等于( )A.10B.12C.15D.307.已知数列{an}满足a1=0,an+1=,则a2022等于( )A.0B.1C.D.28.已知各项都不为0的等差数列{an}满足a4-2a+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b12等于( )A.1B.2C.4D.89.已知数列{an}的前n项和为Sn,且Sn+an=2n(n∈N*),则下列数列中一定是等比数列的是( )A.{an}B.{an-1}C.{an-2}D.{an+2}10.设等差数列{an}的前n项和为Sn,且满足a1=2,a2+a4+a6=15,则S10=________.11.已知等比数列{an}的前n项和为Sn,若a=2a3a6,S5=-62,则a1的值是________.12.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.则an=________.13.已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(1)求数列{an}的通项公式;(2)若数列{an}和数列{bn}满足等式:an=+++…+(n为正整数),求数列{bn}的前n项和Sn.-4-\n14.已知数列{an}的首项a1=1,其前n项和为Sn,且对任意正整数n都有n,an,Sn成等差数列.(1)求证:数列{Sn+n+2}成等比数列;(2)求数列{an}的通项公式.15.已知正项数列{an},a1=1,an=a+2an+1.(1)求证:数列{log2(an+1)}为等比数列;(2)设bn=nlog2(an+1),数列{bn}的前n项和为Sn,求证:1≤Sn<4.-4-\n专题限时集训(十)【基础演练】1.C [解析]由a6=a1a2a3,得a1q5=aq3,即q2=a.因为等比数列的各项都为正数,所以q=a1=2.2.C [解析]设数列{an}的公差为d,则a5=a1+4d=8,S3=3a1+d=6,解得a1=0,d=2,所以a9=0+8×2=16.3.C [解析]由an+2=2an+1-an得,数列{an}为等差数列.由a5=4-a3,得a5+a3=4=a1+a7,所以S7==14.4.C [解析]设数列{an}的公比为q.易知,a5是a2和a8的等比中项,所以a=a2a8=1×64=64,又由于=q3,q的符号不确定,故a5与a2符号可能相同,也可能不相同,因此a5=±8.5.n2-n+2 [解析]由于an+1-an=2n,所以a2-a1=2×1,a3-a2=2×2,…,an-an-1=2(n-1),将这n-1个等式叠加,整理得an-a1=2[1+2+…+(n-1)]=n(n-1),故an=n2-n+2.【提升训练】6.C [解析]S5===15.7.B [解析]经验算得,a1=0,a2=1,a3=,a4=2,a5=0,…故可知数列{an}具有周期性,且其周期为4,所以a2022=a4×503+2=a2=1.8.C [解析]因为a4-2a+3a8=0,所以2a=a4+3a8=4a7,所以a7=2,所以b7=2,所以b2b12=b=4.9.C [解析]由Sn+an=2n①,可得Sn-1+an-1=2(n-1)(n≥2)②,由①-②得2an-an-1=2,即an-2=(an-1-2),可知数列{an-2}为等比数列.10.65 [解析]设数列{an}的公差为d,则a2+a4+a6=3a1+9d=6+9d=15,得d=1,所以S10=10×2+×1=65.11.-2 [解析]设公比为q.由a=2a3a6得(a1q4)2=2a1q2·a1q5,所以q=2.又S5==-62,解得a1=-2.12.4n-1+n [解析]由题设an+1=4an-3n+1,n∈N*,得an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,所以数列是首项为1,且公比为4的等比数列,所以an-n=4n-1,所以an=4n-1+n.13.解:(1){an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.∴又公差d>0,故∴d=2,a1=1.∴an=2n-1.(2)n≥2时,=2n-1-(2n-3)=2,bn=2n+1,又=a1=1,b1=2,∴bn=n≥2时,Sn=(4+8+…+2n+1)-2=-2=2n+2-6,n=1时也符合,故Sn=2n+2-6.14.解:(1)证明:∵n,an,Sn成等差数列,∴2an=n+Sn,又an=Sn-Sn-1(n≥2),-4-\n∴2(Sn-Sn-1)=n+Sn(n≥2),即Sn=2Sn-1+n(n≥2),∴Sn+n+2=2Sn-1+2n+2(n≥2),∴Sn+n+2=2[Sn-1+(n-1)+2](n≥2),即=2,∴数列成等比数列.(2)由(1)知数列是以S1+3=a1+3=4为首项,2为公比的等比数列,∴Sn+n+2=4×2n-1=2n+1,又2an=n+Sn,∴2an+2=2n+1,∴an=2n-1.15.证明:(1)∵an=a+2an+1,∴an+1=(an+1+1)2.∵an>0,∴log2(an+1+1)=log2(an+1).∴{log2(an+1)}是以1为首项,为公比的等比数列.(2)由(1)可知log2(an+1)=,∴bn=nlog2(an+1)=n·,Sn=1+++…++,Sn=++…++,上面两式相减,得Sn=1+++…+-=2-,∴Sn=4-<4,又∵bn=n·>0,∴Sn≥S1=1,所以1≤Sn<4.-4-