专题2.3函数奇偶性1.(2022·沈阳模拟)函数f(x)满足f(x+1)=-f(x),且当0≤x≤1时,f(x)=2x(1-x),则f的值为【答案】【解析】∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),即函数f(x)的周期为2.∴f=f=f=2××=.2.(2022·江苏高考)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是________.【答案】-.3.(2022·广州联考)已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=________.【答案】-2【解析】因为f(x+4)=f(x),所以函数f(x)的周期T=4,又f(x)在R上是奇函数,所以f(7)=f(-1)=-f(1)=-2×12=-2.4.(2022·泰安模拟)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为________.【答案】2【解析】设g(x)=f(x+1),∵f(x+1)为偶函数,则g(-x)=g(x),即f(-x+1)=f(x+1),∵f(x)是奇函数,∴f(-x+1)=f(x+1)=-f(x-1),即f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(5)=0+2=25.(2022·天津高考改编)已知f(x-6-\n)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是________.【答案】【解析】因为f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,所以f(-x)=f(x),且f(x)在(0,+∞)上单调递减.由f(2|a-1|)>f(-),f(-)=f(),可得2|a-1|<,即|a-1|<,所以<a<.6.(2022·山东高考改编)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f,则f(6)=________.【答案】2【解析】由题意知当x>时,f=f,则f(x+1)=f(x).又当-1≤x≤1时,f(-x)=-f(x),∴f(6)=f(1)=-f(-1).又当x<0时,f(x)=x3-1,∴f(-1)=-2,∴f(6)=2.7.(2022·揭阳模拟)已知函数f(x)是周期为2的奇函数,当x∈[0,1)时,f(x)=lg(x+1),则f+lg18=________.【答案】18.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=________.【答案】-9【解析】观察可知,y=x3cosx为奇函数,且f(a)=a3cosa+1=11,故a3cosa=10.则f(-a)=-a3·cosa+1=-10+1=-9.9.设f(x)是偶函数,且当x>0时是单调函数,则满足f(2x)=f的所有x之和为________.【答案】-8-6-\n10.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.【答案】 7【解析】因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.11.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.[答案] (1,3].[解析] (1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增.结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].12.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).-6-\n(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2014]上的所有x的个数.【答案】(1)详见解析,(2)503.∴f(x-2)=f(x+2)=-f(x),∴-f(x)=(x-2),∴f(x)=-(x-2)(1<x<3).∴f(x)=由f(x)=-,解得x=-1.∵f(x)是以4为周期的周期函数,∴f(x)=-的所有x=4n-1(n∈Z).-6-\n令0≤4n-1≤2014,则≤n≤.又∵n∈Z,∴1≤n≤503(n∈Z),∴在[0,2014]上共有503个x使f(x)=-.13.已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=.(1)求f(1)和f(-1)的值;(2)求f(x)在[-1,1]上的解析式.【答案】(1)f(1)=0,f(-1)=0.(2)f(x)=14.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.【答案】(1)详见解析,(2)f(x)max=6,f(x)min=-6.【解析】(1)证明 令x=y=0,知f(0)=0;再令y=-x,-6-\n则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解 任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.-6-