四川省2022年上学期泸县第一中学高三数学文开学考试试题一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.=A.B.C.D.2.在中,D是AB边上的中点,则=A.B.C.D.3.疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为A.B.C.D.4.设,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数,则不等式的解集是A.B.C.D.6.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%7/7\n的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62%B.56%C.46%D.42%7.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为A.B.C.D.8.已知2tanθ–tan(θ+)=7,则tanθ=A.–2B.–1C.1D.29.设函数,则f(x)A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减10.若,则A.B.C.D.11.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点7/7\n③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.有一个质地均匀的正四面体木块个面分别标有数字.将此木块在水平桌面上抛两次,则两次看不到的数字都大于的概率为__________.14.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.16.设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。7/7\n(一)必考题:共60分。17.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=,≈1.414.18.(12分)的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.7/7\n19.(12分)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.20.(12分)已知函数,为的导数.证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点.21.(12分)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.7/7\n(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.23.[选修4—5:不等式选讲](10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.7/7\n7/7