第05节函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用【考纲解读】考点考纲内容5年统计分析预测函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用了解函数y=Asin(ωx+φ)的物理意义,掌握y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.2022浙江文6理4;2022浙江文4,理4;2022浙江文11,理10.1.“五点法”作图;2.函数图象的变换;3.三角函数模型的应用问题.4.备考重点:(1)掌握函数图象的变换;(2)掌握三角函数模型的应用.【知识清单】1.求三角函数解析式(1)的有关概念,表示一个振动量时振幅周期频率相位初相(2)用五点法画一个周期内的简图用五点法画一个周期内的简图时,要找五个关键点,如下表所示:-(3)由的图象求其函数式:已知函数-18-\n的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(4)利用图象变换求解析式:由的图象向左或向右平移个单位,,得到函数,将图象上各点的横坐标变为原来的倍(),便得,将图象上各点的纵坐标变为原来的倍(),便得.对点练习:【2022浙江嘉兴上学期测试】若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是()A.B.C.D.【答案】A【解析】向右平移个单位长度变换得到,故选A.2.三角函数图象的变换1.函数图象的变换(平移变换和上下变换)平移变换:左加右减,上加下减把函数向左平移个单位,得到函数的图像;把函数向右平移个单位,得到函数的图像;把函数向上平移个单位,得到函数的图像;把函数向下平移个单位,得到函数的图像.-18-\n伸缩变换:把函数图像的纵坐标不变,横坐标伸长到原来的,得到函数的图像;把函数图像的纵坐标不变,横坐标缩短到原来的,得到函数的图像;把函数图像的横坐标不变,纵坐标伸长到原来的,得到函数的图像;把函数图像的横坐标不变,纵坐标缩短到原来的,得到函数的图像.2.由的图象变换出的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将的图象向左或向右平移个单位,再将图象上各点的横坐标变为原来的倍(),便得的图象.途径二:先周期变换(伸缩变换)再平移变换:先将的图象上各点的横坐标变为原来的倍(),再沿轴向左()或向右()平移个单位,便得的图象.注意:函数的图象,可以看作把曲线上所有点向左(当时)或向右(当时)平行移动个单位长度而得到.对点练习:【2022课标1,理9】已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是-18-\nA.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】3.函数的图像与性质的综合应用(1)的递增区间是,递减区间是.(2)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为.-18-\n(3)若为偶函数,则有;若为奇函数则有.(4)的最小正周期都是.对点练习:【2022黑龙江省齐齐哈尔八中8月月考】将函数的图像向右平移个单位后得到函数,则具有性质()A.最大值为1,图像关于直线对称B.周期为,图像关于点对称C.在上单调递增,为偶函数D.在上单调递减,为奇函数【答案】D当x=时,g(x)=,故g(x)的图象不关于点(,0)对称,故排除B,故选:D.【考点深度剖析】-18-\n近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将恒等变换与图象和性质结合考查.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法,其中对函数的图象要求会用五点作图法作出,并理解它的性质:(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;(2)函数图象与x轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;(3)函数取最值的点与相邻的与x轴的交点间的距离为其函数的个周期.注意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移.【重点难点突破】考点1求三角函数解析式【1-1】【2022山东青岛期初调研】已知函数的最小正周期为,若将函数的图象向右平移个单位,得到函数的图象,则函数的解析式为()A.B.C.D.【答案】C故选C.【1-2】【2022云南省师范大学附属中学适应性月考卷一】将函数的图象向左平移个单位,所得的图象所对应的函数解析式是()A.B.C.D.-18-\n【答案】C【解析】的图象向左平移单位得到的图象,即将函数的图象向左平移个单位,所得的图象所对应的函数解析式是,故选C.【1-3】【2022安徽省巢湖一中、合肥八中、淮南二中等高中十校联盟摸底】已知函数的图象如图所示,若将函数的图象向左平移个单位,则所得图象对应的函数可以为()A.B.C.D.【答案】A即=故选A.-18-\n【领悟技法】1.根据的图象求其解析式的问题,主要从以下四个方面来考虑:(1)的确定:根据图象的最高点和最低点,即=;(2)的确定:根据图象的最高点和最低点,即=;(3)的确定:结合图象,先求出周期,然后由()来确定;(4)求,常用的方法有:①代入法:把图像上的一个已知点代入(此时已知)或代入图像与直线的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定值时,由函数最开始与轴的交点的横坐标为(即令,)确定.将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与轴的交点)为,其他依次类推即可.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量而言的,如果的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.【触类旁通】【变式一】已知是函数一个周期内的图象上的四个点,如图所示,为轴上的点,为图像上的最低点,为该函数图像的一个对称中心,与关于点对称,在轴上的投影为,则的值为()A.B.-18-\nC.D.【答案】A所以.故选A.【变式二】【2022安徽省六安市寿县第一中学上学期第一次月考】函数错误!未找到引用源。错误!未找到引用源。的部分图象如图所示,将错误!未找到引用源。的图象向左平移错误!未找到引用源。个单位后的解析式为()A.错误!未找到引用源。B.错误!未找到引用源。C.错误!未找到引用源。D.错误!未找到引用源。【答案】B【解析】根据函数错误!未找到引用源。的部分图象知,错误!未找到引用源。,解得错误!未找到引用源。,根据五点法画正弦函数图象,知错误!未找到引用源。时,错误!未找到引用源。,解得错误!未找到引用源。,将错误!未找到引用源。的图象向左平移错误!未找到引用源。个单位后,得到错误!未找到引用源。,故选B.考点2三角函数图象的变换【2-1】【2022黑龙江省大庆实验中学上学期期初考】已知函数的最小正周期为,则函数的图象()-18-\nA.可由函数的图象向左平移个单位而得B.可由函数的图象向右平移个单位而得C.可由函数的图象向左平移个单位而得D.可由函数的图象向右平移个单位而得【答案】D【解析】由已知得,则的图象可由函数的图象向右平移个单位而得,故选D.【2-2】【2022浙江温州二模】要得到函数错误!未找到引用源。的图像,只需将函数错误!未找到引用源。的图像()A.向右平移错误!未找到引用源。个单位B.向左平移错误!未找到引用源。个单位C.向右平移错误!未找到引用源。个单位D.向左平移错误!未找到引用源。个单位【答案】A【领悟技法】1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错.2.图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.4.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.【触类旁通】【变式】将函数()的图象分别向左.向右各平移-18-\n个单位后,所得的两个图象的对称轴重合,则的最小值为()A.B.C.D.【答案】C【解析】将函数()的图象向左平移个单位后,所得图像的解析式为,将函数()的图象向右平选C考点3函数的图像与性质的综合应用【3-1】已知函数,,其中,.若的最小正周期为,且当时,取得最大值,则().A.在区间上是增函数B.在区间上是增函数C.在区间上是减函数D.在区间上是减函数【答案】A【解析】由已知,,因,故,,由得-18-\n,,故单调增区间为,由得,故单调减区间为,结合选项,故选A.【3-2】【2022浙江杭州二模】设函数.(1)求函数的周期和单调递增区间;(2)当时,求函数的最大值.【答案】(1);(2)3.试题解析:(1)因为.,,函数的单调递增区间为:;(2),,,-18-\n的最大值是3.【3-3】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:036912151821241.52.41.50.61.42.41.60.61.5(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从①,②,③中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ)中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全。【答案】(1)选②做为函数模型,;(2)这一天可以安排早上5点至7点以及11点至18点的时间段组织训练.才能确保集训队员的安全.试题解析:(Ⅰ)根据表中近似数据画出散点图,如图所示:-18-\n-(Ⅱ)由(Ⅰ)知:令,即-18-\n又∴这一天可以安排早上5点至7点以及11点至18点的时间段组织训练,才能确保集训队员的安全。【领悟技法】1.求形如或(其中A≠0,)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“()”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与(),()的单调区间对应的不等式方向相同(反).2.如何确定函数当时函数的单调性对于函数求其单调区间,要特别注意的正负,若为负值,需要利用诱导公式把负号提出来,转化为的形式,然后求其单调递增区间,应把放在正弦函数的递减区间之内;若求其递减区间,应把放在正弦函数的递增区间之内.3.求函数(或,或)的单调区间的步骤:(1)将化为正.(2)将看成一个整体,由三角函数的单调性求解.4.特别提醒:解答三角函数的问题时,不要漏了“”.三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.【触类旁通】【2022福建省闽侯第六中学第一次月考】将函数的图象上各点的横坐标变为原来的(纵坐标不变),再往上平移1个单位,所得图象对应的函数在下面哪个区间上单调递增()-18-\nA.B.C.D.【答案】A【解析】将函数的图象上各点的横坐标变为原来的,可得再往上平移个单位,得函数的图象,令,解得:,当时,为,故选A.【易错试题常警惕】易错典例:将函数的图像向右平移个单位长度后得到函数的图像,若,的图像都经过点,则的值可以是()A.B.C.D.易错分析:函数的图像向右平移个单位长度误写成.,故选B.温馨提醒:(1)三角函数图像变换是高考的一个重点内容.解答此类问题的关键是抓住“只能对函数关系式中的变换”的原则.(2)对于三角函数图像平移变换问题,其移变换规则是“左加右减”,并且在变换过程中只变换其中的自变量,如果-18-\n的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向,另外,当两个函数的名称不同时,首先要将函数名称统一,其次要把变换成,最后确定平移的单位,并根据的符号确定平移的方向.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。""数"与"形"反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.向量的几何表示,三角形、平行四边形法则,使向量具备形的特征,而向量的坐标表示和坐标运算又具备数的特征,因此,向量融数与形于一身,具备了几何形式与代数形式的“双重身份”.因此,在应用向量解决问题或解答向量问题时,要注意恰当地运用数形结合思想,将复杂问题简单化、将抽象问题具体化,达到事半功倍的效果.【典例】已知函数错误!未找到引用源。的部分图象如图所示,下面结论正确的个数是()①函数错误!未找到引用源。的最小正周期是错误!未找到引用源。;②函数错误!未找到引用源。在区间错误!未找到引用源。上是增函数;③函数错误!未找到引用源。的图象关于直线错误!未找到引用源。对称;④函数错误!未找到引用源。的图象可由函数错误!未找到引用源。的图象向左平移错误!未找到引用源。个单位长度得到A.3B.2C.1D.0【答案】C-18-\n对于①,函数f(x)的最小正周期是T=π,①错误;对于②,x∈[错误!未找到引用源。,错误!未找到引用源。]时,2x+错误!未找到引用源。∈[错误!未找到引用源。,错误!未找到引用源。],故选:C.-18-