【三维设计】2022届高考数学一轮复习热点难点突破不拉分系列(十)类比推理三法宝观察分析比较新人教版 类比是数学中发现概念、定理、公式的重要手段,也是开拓新领域、创造新分支的重要手段,类比在数学中应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限之间有不少结论,都是先用类比法猜想,而后加以证明的.[典例] (2022·陕西师大附中模拟)若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为( )A.dn= B.dn=C.dn=D.dn=[解析] 若{an}是等差数列,则a1+a2+…+an=na1+d,∴bn=a1+d=n+a1-,即{bn}为等差数列;若{cn}是等比数列,则c1·c2·…·cn=c·q1+2+…+(n-1)=c·q,∴dn==c1·q,即{dn}为等比数列.[答案] D2\n[题后悟道] 1.解决此类问题的方法是从我们已经掌握的事物的特征,推测正在被研究中的事物的特征,以旧的知识作基础,推测新的结果,具有发现的功能.进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.2.类比推理是由特殊到特殊的推理,在类比时要善于观察、分析、比较,又敢于联想,从而提高解题能力.针对训练(2022·长春市调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)·S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①② B.③④C.①④D.②③解析:选B 经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),又S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).综上所述,选B.2